construction permit, early site permit, or standard design approval, or before the Commission has adopted a final standard design certification rule under part 52 of this chapter, the applicant shall agree in writing that it will not permit any individual to have access to any facility to possess Restricted Data or classified National Security Information until the individual and/or facility has been approved for access under the provisions of 10 CFR parts 25 and/or 95. The agreement of the applicant becomes part of the license, or construction permit, standard design approval. [72 FR 49493, Aug. 28, 2007] ### § 50.38 Ineligibility of certain applicants. Any person who is a citizen, national, or agent of a foreign country, or any corporation, or other entity which the Commission knows or has reason to believe is owned, controlled, or dominated by an alien, a foreign corporation, or a foreign government, shall be ineligible to apply for and obtain a license. [21 FR 355, Jan. 16, 1956, as amended at 43 FR 6924, Feb. 17, 1978] #### § 50.39 Public inspection of applications. Applications and documents submitted to the Commission in connection with applications may be made available for public inspection in accordance with the provisions of the regulations contained in part 2 of this chapter. STANDARDS FOR LICENSES, CERTIFI-CATIONS, AND REGULATORY APPROV- ### § 50.40 Common standards. In determining that a construction permit or operating license in this part, or early site permit, combined license, or manufacturing license in part 52 of this chapter will be issued to an applicant, the Commission will be guided by the following considerations: (a) Except for an early site permit or manufacturing license, the processes to be performed, the operating procedures, the facility and equipment, the use of the facility, and other technical specifications, or the proposals, in regard to any of the foregoing collectively provide reasonable assurance that the applicant will comply with the regulations in this chapter, including the regulations in part 20 of this chapter, and that the health and safety of the public will not be endangered. - (b) The applicant for a construction permit, operating license, combined license, or manufacturing license is technically and financially qualified to engage in the proposed activities in accordance with the regulations in this chapter. However, no consideration of financial qualification is necessary for an electric utility applicant for an operating license for a utilization facility of the type described in §50.21(b) or §50.22 or for an applicant for a manufacturing license. - (c) The issuance of a construction permit, operating license, early site permit, combined license, or manufacturing license to the applicant will not, in the opinion of the Commission, be inimical to the common defense and security or to the health and safety of the public. - (d) Any applicable requirements of subpart A of 10 CFR part 51 have been satisfied. [72 FR 49493, Aug. 28, 2007] ## § 50.41 Additional standards for class 104 licenses. In determining that a class 104 license will be issued to an applicant, the Commission will, in addition to applying the standards set forth in §50.40 be guided by the following considerations: - (a) The Commission will permit the widest amount of effective medical therapy possible with the amount of special nuclear material available for such purposes. - (b) The Commission will permit the conduct of widespread and diverse research and development. - (c) [Reserved] [21 FR 355, Jan. 19, 1956, as amended at 35 FR 19660, Dec. 29, 1970; 73 FR 44620, July 31, 2008] ### § 50.42 Additional standard for class 103 licenses. In determining whether a class 103 license will be issued to an applicant, the Commission will, in addition to applying the standards set forth in §50.40, consider whether the proposed activities will serve a useful purpose proportionate to the quantities of special nuclear material or source material to be utilized. [73 FR 44620, July 31, 2008] #### § 50.43 Additional standards and provisions affecting class 103 licenses and certifications for commercial power. In addition to applying the standards set forth in §§50.40 and 50.42, paragraphs (a) through (e) of this section apply in the case of a class 103 license for a facility for the generation of commercial power. For a design certification under part 52 of this chapter, only paragraph (e) of this section applies. - (a) The NRC will: - (1) Give notice in writing of each application to the regulatory agency or State as may have jurisdiction over the rates and services incident to the proposed activity; - (2) Publish notice of the application in trade or news publications as it deems appropriate to give reasonable notice to municipalities, private utilities, public bodies, and cooperatives which might have a potential interest in the utilization or production facility; and - (3) Publish notice of the application once each week for 4 consecutive weeks in the FEDERAL REGISTER. No license will be issued by the NRC prior to the giving of these notices and until 4 weeks after the last notice is published in the FEDERAL REGISTER. - (b) If there are conflicting applications for a limited opportunity for such license, the Commission will give preferred consideration in the following order: First, to applications submitted by public or cooperative bodies for facilities to be located in high cost power areas in the United States; second, to applications submitted by others for facilities to be located in such areas; third, to applications submitted by public or cooperative bodies for facilities to be located in other than high cost power areas; and, fourth, to all other applicants. - (c) The licensee who transmits electric energy in interstate commerce, or sells it at wholesale in interstate commerce, shall be subject to the regulatory provisions of the Federal Power Act. - (d) Nothing shall preclude any government agency, now or hereafter authorized by law to engage in the production, marketing, or distribution of electric energy, if otherwise qualified, from obtaining a construction permit or operating license under this part, or a combined license under part 52 of this chapter for a utilization facility for the primary purpose of producing electric energy for disposition for ultimate public consumption. - (e) Applications for a design certification, combined license, manufacturing license, or operating license that propose nuclear reactor designs which differ significantly from lightwater reactor designs that were licensed before 1997, or use simplified, inherent, passive, or other innovative means to accomplish their safety functions, will be approved only if: - (1)(i) The performance of each safety feature of the design has been demonstrated through either analysis, appropriate test programs, experience, or a combination thereof; - (ii) Interdependent effects among the safety features of the design are acceptable, as demonstrated by analysis, appropriate test programs, experience, or a combination thereof: and - (iii) Sufficient data exist on the safety features of the design to assess the analytical tools used for safety analyses over a sufficient range of normal operating conditions, transient conditions, and specified accident sequences, including equilibrium core conditions; or - (2) There has been acceptable testing of a prototype plant over a sufficient range of normal operating conditions, transient conditions, and specified accident sequences, including equilibrium core conditions. If a prototype plant is used to comply with the testing requirements, then the NRC may impose additional requirements on siting, safety features, or operational conditions for the prototype plant to protect the public and the plant staff from the possible consequences of accidents during the testing period. [21 FR 355, Jan. 19, 1956, as amended at 35 FR 19660, Dec. 29, 1970; 63 FR 50480, Sept. 22, 1998; 72 FR 49494, Aug. 28, 2007] ### § 50.44 Combustible gas control for nuclear power reactors. - (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with less than 4 percent oxygen by volume. - (2) Mixed atmosphere means that the concentration of combustible gases in any part of the containment is below a level that supports combustion or detonation that could cause loss of containment integrity. - (b) Requirements for currently-licensed reactors. Each boiling or pressurized water nuclear power reactor with an operating license on October 16, 2003, except for those facilities for which the certifications required under \$50.82(a)(1) have been submitted, must comply with the following requirements, as applicable: - (1) Mixed atmosphere. All containments must have a capability for ensuring a mixed atmosphere. - (2) Combustible gas control. (i) All boiling water reactors with Mark I or Mark II type containments must have an inerted atmosphere. - (ii) All boiling water reactors with Mark III type containments and all pressurized water reactors with ice condenser containments must have the capability for controlling combustible gas generated from a metal-water reaction involving 75 percent of the fuel cladding surrounding the active fuel region (excluding the cladding surrounding the plenum volume) so that there is no loss of containment structural integrity. - (3) Equipment survivability. All boiling water reactors with Mark III containments and all pressurized water reactors with ice condenser containments that do not rely upon an inerted atmosphere inside containment to control combustible gases must be able to establish and maintain safe shutdown and containment structural integrity with systems and components capable of performing their functions during and after exposure to the environmental conditions created by the burning of hydrogen. Environmental - conditions caused by local detonations of hydrogen must also be included, unless such detonations can be shown unlikely to occur. The amount of hydrogen to be considered must be equivalent to that generated from a metalwater reaction involving 75 percent of the fuel cladding surrounding the active fuel region (excluding the cladding surrounding the plenum volume). - (4) Monitoring. (i) Equipment must be provided for monitoring oxygen in containments that use an inerted atmosphere for combustible gas control. Equipment for monitoring oxygen must be functional, reliable, and capable of continuously measuring the concentration of oxygen in the containment atmosphere following a significant beyond design-basis accident for combustible gas control and accident management, including emergency planning. - (ii) Equipment must be provided for monitoring hydrogen in the containment. Equipment for monitoring hydrogen must be functional, reliable, and capable of continuously measuring the concentration of hydrogen in the containment atmosphere following a significant beyond design-basis accident for accident management, including emergency planning. - (5) Analyses. Each holder of an operating license for a boiling water reactor with a Mark III type of containment or for a pressurized water reactor with an ice condenser type of containment, shall perform an analysis that: - (i) Provides an evaluation of the consequences of large amounts of hydrogen generated after the start of an accident (hydrogen resulting from the metal-water reaction of up to and including 75 percent of the fuel cladding surrounding the active fuel region, excluding the cladding surrounding the plenum volume) and include consideration of hydrogen control measures as appropriate; - (ii) Includes the period of recovery from the degraded condition; - (iii) Uses accident scenarios that are accepted by the NRC staff. These scenarios must be accompanied by sufficient supporting justification to show that they describe the behavior of the reactor system during and following an accident resulting in a degraded core. - (iv) Supports the design of the hydrogen control system selected to meet the requirements of this section; and, - (v) Demonstrates, for those reactors that do not rely upon an inerted atmosphere to comply with paragraph (b)(2)(ii) of this section, that: - (A) Containment structural integrity is maintained. Containment structural integrity must be demonstrated by use of an analytical technique that is accepted by the NRC staff in accordance with §50.90. This demonstration must include sufficient supporting justification to show that the technique describes the containment response to the structural loads involved. This method could include the use of actual material properties with suitable margins to account for uncertainties in modeling, in material properties, in construction tolerances, and so on; and - (B) Systems and components necessary to establish and maintain safe shutdown and to maintain containment integrity will be capable of performing their functions during and after exposure to the environmental conditions created by the burning of hydrogen, including local detonations, unless such detonations can be shown unlikely to occur. - (c) Requirements for future water-cooled reactor applicants and licensees.² The requirements in this paragraph apply to all water-cooled reactor construction permits or operating licenses under this part, and to all water-cooled reactor design approvals, design certifications, combined licenses or manufacturing licenses under part 52 of this chapter, any of which are issued after October 16, 2003. - (1) Mixed atmosphere. All containments must have a capability for ensuring a mixed atmosphere during design-basis and significant beyond design-basis accidents. - (2) Combustible gas control. All containments must have an inerted atmosphere, or must limit hydrogen concentrations in containment during and - ²The requirements of this paragraph apply only to water-cooled reactor designs with characteristics (e.g., type and quantity of cladding materials) such that the potential for production of combustible gases is comparable to light water reactor designs licensed as of October 16, 2003 - following an accident that releases an equivalent amount of hydrogen as would be generated from a 100 percent fuel clad-coolant reaction, uniformly distributed, to less than 10 percent (by volume) and maintain containment structural integrity and appropriate accident mitigating features. - Equipment Survivability. Containments that do not rely upon an inerted atmosphere to control combustible gases must be able to establish and maintain safe shutdown and containment structural integrity with systems and components capable of performing their functions during and after exposure to the environmental conditions created by the burning of hydrogen. Environmental conditions caused by local detonations of hydrogen must also be included, unless such detonations can be shown unlikely to occur. The amount of hydrogen to be considered must be equivalent to that generated from a fuel clad-coolant reaction involving 100 percent of the fuel cladding surrounding the active fuel region. - (4) Monitoring. (i) Equipment must be provided for monitoring oxygen in containments that use an inerted atmosphere for combustible gas control. Equipment for monitoring oxygen must be functional, reliable, and capable of continuously measuring the concentration of oxygen in the containment atmosphere following a significant beyond design-basis accident for combustible gas control and accident management, including emergency planning. - (ii) Equipment must be provided for monitoring hydrogen in the containment. Equipment for monitoring hydrogen must be functional, reliable, and capable of continuously measuring the concentration of hydrogen in the containment atmosphere following a significant beyond design-basis accident for accident management, including emergency planning. - (5) Structural analysis. An applicant must perform an analysis that demonstrates containment structural integrity. This demonstration must use an analytical technique that is accepted by the NRC and include sufficient supporting justification to show that the technique describes the containment response to the structural loads involved. The analysis must address an accident that releases hydrogen generated from 100 percent fuel clad-coolant reaction accompanied by hydrogen burning. Systems necessary to ensure containment integrity must also be demonstrated to perform their function under these conditions. - (d) Requirements for future non watercooled reactor applicants and licensees and certain water-cooled reactor applicants and licensees. The requirements in this paragraph apply to all construction permits and operating licenses under this part, and to all design approvals, design certifications, combined licenses, or manufacturing licenses under part 52 of this chapter, for non water-cooled reactors and watercooled reactors that do not fall within the description in paragraph (c), footnote 1 of this section, any of which are issued after October 16, 2003. Applications subject to this paragraph must - (1) Information addressing whether accidents involving combustible gases are technically relevant for their design, and - (2) If accidents involving combustible gases are found to be technically relevant, information (including a design-specific probabilistic risk assessment) demonstrating that the safety impacts of combustible gases during design-basis and significant beyond design-basis accidents have been addressed to ensure adequate protection of public health and safety and common defense and security. [68 FR 54141, Sept. 16, 2003] # § 50.45 Standards for construction permits, operating licenses, and combined licenses. (a) An applicant for an operating license or an amendment of an operating license who proposes to construct or alter a production or utilization facility will be initially granted a construction permit if the application is in conformity with and acceptable under the criteria of §§50.31 through 50.38, and the standards of §§50.40 through 50.43, as applicable. (b) A holder of a combined license who proposes, after the Commission makes the finding under §52.103(g) of this chapter, to alter the licensed facility will be initially granted a construction permit if the application is in conformity with and acceptable under the criteria of §\$50.30 through 50.33, §50.34(f), §\$50.34a through 50.38, the standards of §\$50.40 through 50.43, as applicable, and §\$52.79 and 52.80 of this chapter. [72 FR 49494, Aug. 28, 2007] # § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide pellets within cylindrical zircaloy or ZIRLO cladding must be provided with an emergency core cooling system (ECCS) that must be designed so that its calculated cooling performance following postulated loss-of-coolant accidents conforms to the criteria set forth in paragraph (b) of this section. ECCS cooling performance must be calculated in accordance with an acceptable evaluation model and must be calculated for a number of postulated loss-of-coolant accidents of different sizes, locations, and other properties sufficient to provide assurance that the most severe postulated loss-of-coolant accidents are calculated. Except as provided in paragraph (a)(1)(ii) of this section, the evaluation model must include sufficient supporting justification to show that the analytical technique realistically describes the behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental data must be made and uncertainties in the analysis method and inputs must be identified and assessed so that the uncertainty in the calculated results can be estimated. This uncertainty must be accounted for, so that, when the calculated ECCS cooling performance is compared to the criteria set forth in paragraph (b) of this section, there is a high level of probability that the criteria would not be exceeded. Appendix K, Part II Required Documentation, sets forth the documentation requirements for each evaluation model. This section does not apply to a nuclear power reactor facility for which the certifications required under §50.82(a)(1) have been submitted. - (ii) Alternatively, an ECCS evaluation model may be developed in conformance with the required and acceptable features of appendix K ECCS Evaluation Models. - (2) The Director of Nuclear Reactor Regulation may impose restrictions on reactor operation if it is found that the evaluations of ECCS cooling performance submitted are not consistent with paragraphs (a)(1) (i) and (ii) of this section. - (3)(i) Each applicant for or holder of an operating license or construction permit issued under this part, applicant for a standard design certification under part 52 of this chapter (including an applicant after the Commission has adopted a final design certification regulation), or an applicant for or holder of a standard design approval, a combined license or a manufacturing license issued under part 52 of this chapter, shall estimate the effect of any change to or error in an acceptable evaluation model or in the application of such a model to determine if the change or error is significant. For this purpose, a significant change or error is one which results in a calculated peak fuel cladding temperature different by more than 50 °F from the temperature calculated for the limiting transient using the last acceptable model, or is a cumulation of changes and errors such that the sum of the absolute magnitudes of the respective temperature changes is greater than 50 °F. - (ii) For each change to or error discovered in an acceptable evaluation model or in the application of such a model that affects the temperature calculation, the applicant or holder of a construction permit, operating license, combined license, or manufacturing license shall report the nature of the change or error and its estimated effect on the limiting ECCS analysis to the Commission at least annually as specified in §50.4 or §52.3 of this chapter, as applicable. If the change or error is significant, the applicant or licensee shall provide this report within 30 days and include with the report a proposed schedule for providing a reanalysis or taking other action as may be needed to show compliance with §50.46 requirements. This schedule may be developed using an integrated scheduling system previously approved for the facility by the NRC. For those facilities not using an NRC approved integrated scheduling system, a schedule will be established by the NRC staff within 60 days of receipt of the proposed schedule. Any change or error correction that results in a calculated ECCS performance that does not conform to the criteria set forth in paragraph (b) of this section is a reportable event as described in §§ 50.55(e), 50.72, and 50.73. The affected applicant or licensee shall propose immediate steps to demonstrate compliance or bring plant design or operation into compliance with §50.46 require- - (iii) For each change to or error discovered in an acceptable evaluation model or in the application of such a model that affects the temperature calculation, the applicant or holder of a standard design approval or the applicant for a standard design certification (including an applicant after the Commission has adopted a final design certification rule) shall report the nature of the change or error and its estimated effect on the limiting ECCS analysis to the Commission and to any applicant or licensee referencing the design approval or design certification at least annually as specified in §52.3 of this chapter. If the change or error is significant, the applicant or holder of the design approval or the applicant for the design certification shall provide this report within 30 days and include with the report a proposed schedule for providing a reanalysis or taking other action as may be needed to show compliance with §50.46 requirements. The affected applicant or holder shall propose immediate steps to demonstrate compliance or bring plant design into compliance with §50.46 requirements. - (b)(1) Peak cladding temperature. The calculated maximum fuel element cladding temperature shall not exceed 2200 °F. - (2) Maximum cladding oxidation. The calculated total oxidation of the cladding shall nowhere exceed 0.17 times the total cladding thickness before oxidation. As used in this subparagraph total oxidation means the total thickness of cladding metal that would be locally converted to oxide if all the oxygen absorbed by and reacted with the cladding locally were converted to stoichiometric zirconium dioxide. If cladding rupture is calculated to occur, the inside surfaces of the cladding shall be included in the oxidation, beginning at the calculated time of rupture. Cladding thickness before oxidation means the radial distance from inside to outside the cladding, after any calculated rupture or swelling has occurred but before significant oxidation. Where the calculated conditions of transient pressure and temperature lead to a prediction of cladding swelling, with or cladding rupture, unoxidized cladding thickness shall be defined as the cladding cross-sectional area, taken at a horizontal plane at the elevation of the rupture, if it occurs, or at the elevation of the highest cladding temperature if no rupture is calculated to occur, divided by the average circumference at that elevation. For ruptured cladding the circumference does not include the rupture opening. - (3) Maximum hydrogen generation. The calculated total amount of hydrogen generated from the chemical reaction of the cladding with water or steam shall not exceed 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react. - (4) Coolable geometry. Calculated changes in core geometry shall be such that the core remains amenable to cooling. - (5) Long-term cooling. After any calculated successful initial operation of the ECCS, the calculated core temperature shall be maintained at an acceptably low value and decay heat shall be removed for the extended period of time required by the long-lived radioactivity remaining in the core. - (c) As used in this section: - (1) Loss-of-coolant accidents (LOCA's) are hypothetical accidents that would result from the loss of reactor coolant, at a rate in excess of the capability of the reactor coolant make- up system, from breaks in pipes in the reactor coolant pressure boundary up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system. - (2) An evaluation model is the calculational framework for evaluating the behavior of the reactor system during a postulated loss-of-coolant accident (LOCA). It includes one or more computer programs and all other information necessary for application of the calculational framework to a specific LOCA, such as mathematical models used, assumptions included in the programs, procedure for treating the program input and output information, specification of those portions of analvsis not included in computer programs, values of parameters, and all other information necessary to specify the calculational procedure. - (d) The requirements of this section are in addition to any other requirements applicable to ECCS set forth in this part. The criteria set forth in paragraph (b), with cooling performance calculated in accordance with an acceptable evaluation model, are in implementation of the general requirements with respect to ECCS cooling performance design set forth in this part, including in particular Criterion 35 of appendix A. [39 FR 1002, Jan. 4, 1974, as amended at 53 FR 36004, Sept. 16, 1988; 57 FR 39358, Aug. 31, 1992; 61 FR 39299, July 29, 1996; 62 FR 59276, Nov. 3, 1997; 72 FR 49494, Aug. 28, 2007] ## § 50.46a Acceptance criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required to maintain adequate core cooling if the accumulation of noncondensible gases would cause the loss of function of these systems. High point vents are not required for the tubes in U-tube steam generators. Acceptable venting systems must meet the following criteria: - (a) The high point vents must be remotely operated from the control room. - (b) The design of the vents and associated controls, instruments and power sources must conform to appendix A and appendix B of this part. - (c) The vent system must be designed to ensure that: - (1) The vents will perform their safety functions: and - (2) There would not be inadvertent or irreversible actuation of a vent. [68 FR 54142, Sept. 16, 2003] #### § 50.47 Emergency plans. (a)(1)(i) Except as provided in paragraph (d) of this section, no initial operating license for a nuclear power reactor will be issued unless a finding is made by the NRC that there is reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. No finding under this section is necessary for issuance of a renewed nuclear power reactor operating license. (ii) No initial combined license under part 52 of this chapter will be issued unless a finding is made by the NRC that there is reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. No finding under this section is necessary for issuance of a renewed combined license. (iii) If an application for an early site permit under subpart A of part 52 of this chapter includes complete and integrated emergency plans under 10 CFR 52.17(b)(2)(ii), no early site permit will be issued unless a finding is made by the NRC that the emergency plans provide reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. (iv) If an application for an early site permit proposes major features of the emergency plans under 10 CFR 52.17(b)(2)(i), no early site permit will be issued unless a finding is made by the NRC that the major features are acceptable in accordance with the applicable standards of 10 CFR 50.47 and 10 CFR part 50, appendix E, within the scope of emergency preparedness matters addressed in the major features. (2) The NRC will base its finding on a review of the Federal Emergency Management Agency (FEMA) findings and determinations as to whether State and local emergency plans are adequate and whether there is reasonable assurance that they can be implemented, and on the NRC assessment as to whether the applicant's onsite emergency plans are adequate and whether there is reasonable assurance that they can be implemented. A FEMA finding will primarily be based on a review of the plans. Any other information already available to FEMA may be considered in assessing whether there is reasonable assurance that the plans can be implemented. In any NRC licensing proceeding, a FEMA finding will constitute a rebuttable presumption on questions of adequacy and implementation capability. - (b) The onsite and, except as provided in paragraph (d) of this section, offsite emergency response plans for nuclear power reactors must meet the following standards: - (1) Primary responsibilities for emergency response by the nuclear facility licensee and by State and local organizations within the Emergency Planning Zones have been assigned, the emergency responsibilities of the various supporting organizations have been specifically established, and each principal response organization has staff to respond and to augment its initial response on a continuous basis. - (2) On-shift facility licensee responsibilities for emergency response are unambiguously defined, adequate staffing to provide initial facility accident response in key functional areas is maintained at all times, timely augmentation of response capabilities is available and the interfaces among various onsite response activities and offsite support and response activities are specified. - (3) Arrangements for requesting and effectively using assistance resources have been made, arrangements to accommodate State and local staff at the licensee's near-site Emergency Operations Facility have been made, and other organizations capable of augmenting the planned response have been identified. - (4) A standard emergency classification and action level scheme, the bases of which include facility system and effluent parameters, is in use by the nuclear facility licensee, and State and local response plans call for reliance on information provided by facility licensees for determinations of minimum initial offsite response measures. - (5) Procedures have been established for notification, by the licensee, of State and local response organizations and for notification of emergency personnel by all organizations; the content of initial and followup messages to response organizations and the public has been established; and means to provide early notification and clear instruction to the populace within the plume exposure pathway Emergency Planning Zone have been established. - (6) Provisions exist for prompt communications among principal response organizations to emergency personnel and to the public. - (7) Information is made available to the public on a periodic basis on how they will be notified and what their initial actions should be in an emergency (e.g., listening to a local broadcast station and remaining indoors), the principal points of contact with the news media for dissemination of information during an emergency (including the physical location or locations) are established in advance, and procedures for coordinated dissemination of information to the public are established. - (8) Adequate emergency facilities and equipment to support the emergency response are provided and maintained. - (9) Adequate methods, systems, and equipment for assessing and monitoring actual or potential offsite consequences of a radiological emergency condition are in use. - (10) A range of protective actions has been developed for the plume exposure pathway EPZ for emergency workers and the public. In developing this range of actions, consideration has been given to evacuation, sheltering, and, as a supplement to these, the prophylactic use of potassium iodide (KI), as appropriate. Guidelines for the choice of protective actions during an emergency, consistent with Federal guidance, are developed and in place, and protective actions for the ingestion exposure pathway EPZ appropriate to the locale have been developed. - (11) Means for controlling radiological exposures, in an emergency, are established for emergency workers. The means for controlling radiological - exposures shall include exposure guidelines consistent with EPA Emergency Worker and Lifesaving Activity Protective Action Guides. - (12) Arrangements are made for medical services for contaminated injured individuals. - (13) General plans for recovery and reentry are developed. - (14) Periodic exercises are (will be) conducted to evaluate major portions of emergency response capabilities, periodic drills are (will be) conducted to develop and maintain key skills, and deficiencies identified as a result of exercises or drills are (will be) corrected. - (15) Radiological emergency response training is provided to those who may be called on to assist in an emergency. - (16) Responsibilities for plan development and review and for distribution of emergency plans are established, and planners are properly trained. - (c)(1) Failure to meet the applicable standards set forth in paragraph (b) of this section may result in the Commission declining to issue an operating license; however, the applicant will have an opportunity to demonstrate to the satisfaction of the Commission that deficiencies in the plans are not significant for the plant in question, that adequate interim compensating actions have been or will be taken promptly, or that there are other compelling reasons to permit plant operations. Where an applicant for an operating license asserts that its inability to demonstrate compliance with the requirements of paragraph (b) of this section results wholly or substantially from the decision of state and/or local governments not to participate further in emergency planning, an operating license may be issued if the applicant demonstrates to the Commission's satisfaction that: - (i) The applicant's inability to comply with the requirements of paragraph (b) of this section is wholly or substantially the result of the non-participation of state and/or local governments. - (ii) The applicant has made a sustained, good faith effort to secure and retain the participation of the pertinent state and/or local governmental authorities, including the furnishing of copies of its emergency plan. - (iii) The applicant's emergency plan provides reasonable assurance that public health and safety is not endangered by operation of the facility concerned. To make that finding, the applicant must demonstrate that, as outlined below, adequate protective measures can and will be taken in the event of an emergency. A utility plan will be evaluated against the same planning standards applicable to a state or local plan, as listed in paragraph (b) of this section, with due allowance made both for— - (A) Those elements for which state and/or local non-participation makes compliance infeasible and - (B) The utility's measures designed to compensate for any deficiencies resulting from state and/or local non-participation. In making its determination on the adequacy of a utility plan, the NRC will recognize the reality that in an actual emergency, state and local government officials will exercise their best efforts to protect the health and safety of the public. The NRC will determine the adequacy of that expected response, in combination with the utility's compensating measures, on a case-by-case basis, subject to the following guidance. In addressing the circumstance where applicant's inability to comply with the requirements of paragraph (b) of this section is wholly or substantially the result of non-participation of state and/or local governments, it may be presumed that in the event of an actual radiological emergency state and local officials would generally follow the utility plan. However, this presumption may be rebutted by, for example, a good faith and timely proffer of an adequate and feasible state and/or local radiological emergency plan that would in fact be relied upon in a radiological emergency. (2) Generally, the plume exposure pathway EPZ for nuclear power plants shall consist of an area about 10 miles (16 km) in radius and the ingestion pathway EPZ shall consist of an area about 50 miles (80 km) in radius. The exact size and configuration of the EPZs surrounding a particular nuclear power reactor shall be determined in relation to local emergency response needs and capabilities as they are af- fected by such conditions as demography, topography, land characteristics, access routes, and jurisdictional boundaries. The size of the EPZs also may be determined on a case-by-case basis for gas-cooled nuclear reactors and for reactors with an authorized power level less than 250 MW thermal. The plans for the ingestion pathway shall focus on such actions as are appropriate to protect the food ingestion pathway. - (d) Notwithstanding the requirements of paragraphs (a) and (b) of this section, and except as specified by this paragraph, no NRC or FEMA review, findings, or determinations concerning the state of offsite emergency preparedness or the adequacy of and capability to implement State and local or utility offsite emergency plans are required prior to issuance of an operating license authorizing only fuel loading or low power testing and training (up to 5 percent of the rated power). Insofar as emergency planning and preparedness requirements are concerned, a license authorizing fuel loading and/or low power testing and training may be issued after a finding is made by the NRC that the state of onsite emergency preparedness provides reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. The NRC will base this finding on its assessment of the applicant's onsite emergency plans against the pertinent standards in paragraph (b) of this section and appendix E. Review of applicant's emergency plans will include the following standards with offsite as- - (1) Arrangements for requesting and effectively using offsite assistance on site have been made, arrangements to accommodate State and local staff at the licensee's near-site Emergency Operations Facility have been made, and other organizations capable of augmenting the planned onsite response have been identified. - (2) Procedures have been established for licensee communications with State and local response organizations, including initial notification of the declaration of emergency and periodic provision of plant and response status reports. - (3) Provisions exist for prompt communications among principal response organizations to offsite emergency personnel who would be responding onsite. - (4) Adequate emergency facilities and equipment to support the emergency response onsite are provided and maintained. - (5) Adequate methods, systems, and equipment for assessing and monitoring actual or potential offsite consequences of a radiological emergency condition are in use onsite. - (6) Arrangements are made for medical services for contaminated and injured onsite individuals. - (7) Radiological emergency response training has been made available to those offsite who may be called to assist in an emergency onsite. - (e) Notwithstanding the requirements of paragraph (b) of this section and the provisions of §52.103 of this chapter, a holder of a combined license under part 52 of this chapter may not load fuel or operate except as provided in accordance with appendix E to part 50 and §50.54(gg). - [45 FR 55409, Aug. 8, 1980, as amended at 47 FR 30235, July 13, 1982; 47 FR 40537, Sept. 15, 1982; 49 FR 27736, July 6, 1984; 50 FR 19324, May 8, 1985; 52 FR 42085, Nov. 3, 1987; 53 FR 36959, Sept. 23, 1988; 56 FR 64976, Dec. 13, 1991; 61 FR 30132, June 14, 1996; 66 FR 5440, Jan. 19, 2001; 72 FR 49495, Aug. 28, 2007] #### § 50.48 Fire protection. - (a)(1) Each holder of an operating license issued under this part or a combined license issued under part 52 of this chapter must have a fire protection plan that satisfies Criterion 3 of appendix A to this part. This fire protection plan must: - (i) Describe the overall fire protection program for the facility; - (ii) Identify the various positions within the licensee's organization that are responsible for the program; - (iii) State the authorities that are delegated to each of these positions to implement those responsibilities; and - (iv) Outline the plans for fire protection, fire detection and suppression capability, and limitation of fire damage. - (2) The plan must also describe specific features necessary to implement the program described in paragraph (a)(1) of this section such as— - (i) Administrative controls and personnel requirements for fire prevention and manual fire suppression activities; - (ii) Automatic and manually operated fire detection and suppression systems; and - (iii) The means to limit fire damage to structures, systems, or components important to safety so that the capability to shut down the plant safely is ensured. - (3) The licensee shall retain the fire protection plan and each change to the plan as a record until the Commission terminates the reactor license. The licensee shall retain each superseded revision of the procedures for 3 years from the date it was superseded. - (4) Each applicant for a design approval, design certification, or manufacturing license under part 52 of this chapter must have a description and analysis of the fire protection design features for the standard plant necessary to demonstrate compliance with Criterion 3 of appendix A to this part. - (b) Appendix R to this part establishes fire protection features required to satisfy Criterion 3 of appendix A to this part with respect to certain generic issues for nuclear power plants licensed to operate before January 1, 1979. - (1) Except for the requirements of Sections III.G, III.J, and III.O, the provisions of Appendix R to this part do not apply to nuclear power plants licensed to operate before January 1, 1979, to the extent that— - (i) Fire protection features proposed or implemented by the licensee have been accepted by the NRC staff as satisfying the provisions of Appendix A to Branch Technical Position (BTP) APCSB 9.5–1 reflected in NRC fire protection safety evaluation reports issued before the effective date of February 19, 1981; or - (ii) Fire protection features were accepted by the NRC staff in comprehensive fire protection safety evaluation reports issued before Appendix A to Branch Technical Position (BTP) APCSB 9.5–1 was published in August 1976. - (2) With respect to all other fire protection features covered by Appendix R, all nuclear power plants licensed to operate before January 1, 1979, must satisfy the applicable requirements of Appendix R to this part, including specifically the requirements of Sections III.G, III.J, and III.O. (c) National Fire Protection Association Standard NFPA 805-(1) Approval of incorporation by reference. National Fire Protection Association (NFPA) Standard 805, "Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plants, 2001 Edition" (NFPA 805), which is referenced in this section, was approved for incorporation by reference by the Director of the Federal Register pursuant to 5 U.S.C. 552(a) and 1 CFR part 51. Copies of NFPA 805 may be purchased from the NFPA Customer Service Department, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101 and in PDF format through the NFPA Online Catalog (www.nfpa.org) or by calling 1-800-344-3555 or (617) 770-3000. Copies are also available for inspection at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, Maryland 20852-2738, and at the NRC Public Document Room, Building One White Flint North, Room O1-F15, 11555 Rockville Pike, Rockville, Maryland 20852-2738. Copies are also available at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call (202) 741-6030, or go to: http://www.archives.gov/federal register/ $code_of_federal_regulations$ $ibr \overline{locations.html}$. - (2) Exceptions, modifications, and supplementation of NFPA 805. As used in this section, references to NFPA 805 are to the 2001 Edition, with the following exceptions, modifications, and supplementation: - (i) Life Safety Goal, Objectives, and Criteria. The Life Safety Goal, Objectives, and Criteria of Chapter 1 are not endorsed. - (ii) Plant Damage/Business Interruption Goal, Objectives, and Criteria. The Plant Damage/Business Interruption Goal, Objectives, and Criteria of Chapter 1 are not endorsed. - (iii) Use of feed-and-bleed. In demonstrating compliance with the performance criteria of Sections 1.5.1(b) and (c), a high-pressure charging/injection pump coupled with the pressurizer power-operated relief valves (PORVs) as the sole fire-protected safe shutdown path for maintaining reactor coolant inventory, pressure control, and decay heat removal capability (*i.e.*, feed-and-bleed) for pressurized-water reactors (PWRs) is not permitted. (iv) *Uncertainty analysis*. An uncertainty analysis performed in accordance with Section 2.7.3.5 is not required to support deterministic approach calculations. (v) Existing cables. In lieu of installing cables meeting flame propagation tests as required by Section 3.3.5.3, a flame-retardant coating may be applied to the electric cables, or an automatic fixed fire suppression system may be installed to provide an equivalent level of protection. In addition, the italicized exception to Section 3.3.5.3 is not endorsed. (vi) Water supply and distribution. The italicized exception to Section 3.6.4 is not endorsed. Licensees who wish to use the exception to Section 3.6.4 must submit a request for a license amendment in accordance with paragraph (c)(2)(vii) of this section. (vii) Performance-based methods. Notwithstanding the prohibition in Section 3.1 against the use of performancebased methods, the fire protection program elements and minimum design requirements of Chapter 3 may be subject to the performance-based methods permitted elsewhere in the standard. Licensees who wish to use performance-based methods for these fire protection program elements and minimum design requirements shall submit a request in the form of an application for license amendment under §50.90. The Director of the Office of Nuclear Reactor Regulation, or a designee of the Director, may approve the application if the Director or designee determines that the performance-based approach: - (A) Satisfies the performance goals, performance objectives, and performance criteria specified in NFPA 805 related to nuclear safety and radiological release: - (B) Maintains safety margins; and - (C) Maintains fire protection defensein-depth (fire prevention, fire detection, fire suppression, mitigation, and post-fire safe shutdown capability). - (3) Compliance with NFPA 805. (i) A licensee may maintain a fire protection program that complies with NFPA 805 as an alternative to complying with paragraph (b) of this section for plants licensed to operate before January 1, 1979, or the fire protection license conditions for plants licensed to operate after January 1, 1979. The licensee shall submit a request to comply with NFPA 805 in the form of an application for license amendment under §50.90. The application must identify any orders and license conditions that must be revised or superseded, and contain any necessary revisions to the plant's technical specifications and the bases thereof. The Director of the Office of Nuclear Reactor Regulation, or a designee of the Director, may approve the application if the Director or designee determines that the licensee has identified orders, license conditions, and the technical specifications that must be revised or superseded, and that any necessary revisions are adequate. Any approval by the Director or the designee must be in the form of a license amendment approving the use of NFPA 805 together with any necessary revisions to the technical specifications. - (ii) The licensee shall complete its implementation of the methodology in Chapter 2 of NFPA 805 (including all required evaluations and analyses) and, upon completion, modify the fire protection plan required by paragraph (a) of this section to reflect the licensee's decision to comply with NFPA 805, before changing its fire protection program or nuclear power plant as permitted by NFPA 805. - (4) Risk-informed or performance-based alternatives to compliance with NFPA 805. A licensee may submit a request to use risk-informed or performance-based alternatives to compliance with NFPA 805. The request must be in the form of an application for license amendment under §50.90 of this chapter. The Director of the Office of Nuclear Reactor Regulation, or designee of the Director, may approve the application if the Director or designee determines that the proposed alternatives: - (i) Satisfy the performance goals, performance objectives, and performance criteria specified in NFPA 805 re- lated to nuclear safety and radiological release; - (ii) Maintain safety margins; and - (iii) Maintain fire protection defensein-depth (fire prevention, fire detection, fire suppression, mitigation, and post-fire safe shutdown capability). - (d)-(e) [Reserved] - (f) Licensees that have submitted the certifications required under §50.82(a)(1) shall maintain a fire protection program to address the potential for fires that could cause the release or spread of radioactive materials (i.e., that could result in a radiological hazard). A fire protection program that complies with NFPA 805 shall be deemed to be acceptable for complying with the requirements of this paragraph. - (1) The objectives of the fire protection program are to— - (i) Reasonably prevent these fires from occurring; - (ii) Rapidly detect, control, and extinguish those fires that do occur and that could result in a radiological hazard: and - (iii) Ensure that the risk of fire-induced radiological hazards to the public, environment and plant personnel is minimized. - (2) The licensee shall assess the fire protection program on a regular basis. The licensee shall revise the plan as appropriate throughout the various stages of facility decommissioning. - (3) The licensee may make changes to the fire protection program without NRC approval if these changes do not reduce the effectiveness of fire protection for facilities, systems, and equipment that could result in a radiological hazard, taking into account the decommissioning plant conditions and activities [65 FR 38190, June 20, 2000, as amended at 69 FR 33550, June 16, 2004; 72 FR 49495, Aug. 28, 20071 ## § 50.49 Environmental qualification of electric equipment important to safety for nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part, or a combined license or manufacturing license issued under part 52 of this chapter, other than a nuclear power plant for which the certifications required under §50.82(a)(1) or §52.110(a)(1) of this chapter have been submitted, shall establish a program for qualifying the electric equipment defined in paragraph (b) of this section. For a manufacturing license, only electric equipment defined in paragraph (b) which is within the scope of the manufactured reactor must be included in the program. - (b) Electric equipment important to safety covered by this section is: - (1) Safety-related electric equipment.³ - (i) This equipment is that relied upon to remain functional during and following design basis events to ensure— - (A) The integrity of the reactor coolant pressure boundary; - (B) The capability to shut down the reactor and maintain it in a safe shutdown condition; or - (C) The capability to prevent or mitigate the consequences of accidents that could result in potential offsite exposures comparable to the guidelines in §50.34(a)(1), §50.67(b)(2), or §100.11 of this chapter, as applicable. - (ii) Design basis events are defined as conditions of normal operation, including anticipated operational occurrences, design basis accidents, external events, and natural phenomena for which the plant must be designed to ensure functions (b)(1)(i) (A) through (C) of this section. - (2) Nonsafety-related electric equipment whose failure under postulated environmental conditions could prevent satisfactory accomplishment of safety functions specified in subparagraphs (b)(1)(i)(A) through (C) of this section by the safety-related equipment. - (3) Certain post-accident monitoring equipment. 4 - (c) Requirements for (1) dynamic and seismic qualification of electric equipment important to safety, (2) protection of electric equipment important to safety against other natural phenomena and external events, and (3) environmental qualification of electric equipment important to safety located in a mild environment are not included within the scope of this section. A mild environment is an environment that would at no time be significantly more severe than the environment that would occur during normal plant operation, including anticipated operational occurrences. - (d) The applicant or licensee shall prepare a list of electric equipment important to safety covered by this section. In addition, the applicant or licensee shall include the information in paragraphs (d)(1), (2), and (3) of this section for this electric equipment important to safety in a qualification file. The applicant or licensee shall keep the list and information in the file current and retain the file in auditable form for the entire period during which the covered item is installed in the nuclear power plant or is stored for future use to permit verification that each item of electric equipment is important to safely meet the requirements of paragraph (j) of this section. - (1) The performance specifications under conditions existing during and following design basis accidents. - (2) The voltage, frequency, load, and other electrical characteristics for which the performance specified in accordance with paragraph (d)(1) of this section can be ensured. - (3) The environmental conditions, including temperature, pressure, humidity, radiation, chemicals, and submergence at the location where the equipment must perform as specified in accordance with paragraphs (d) (1) and (2) of this section. - (e) The electric equipment qualification program must include and be based on the following: ³Safety-related electric equipment is referred to as "Class 1E" equipment in IEEE 323–1974. Copies of this standard may be obtained from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017. ⁴Specific guidance concerning the types of variables to be monitored is provided in Revision 2 of Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident." Copies of the Regulatory Guide may be purchased through the U.S. Government Printing Office by calling 202–275–2060 or by writing to the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013– - (1) Temperature and pressure. The time-dependent temperature and pressure at the location of the electric equipment important to safety must be established for the most severe design basis accident during or following which this equipment is required to remain functional. - (2) *Humidity*. Humidity during design basis accidents must be considered. - (3) Chemical effects. The composition of chemicals used must be at least as severe as that resulting from the most limiting mode of plant operation (e.g., containment spray, emergency core cooling, or recirculation from containment sump). If the composition of the chemical spray can be affected by equipment malfunctions, the most severe chemical spray environment that results from a single failure in the spray system must be assumed. - (4) Radiation. The radiation environment must be based on the type of radiation, the total dose expected during normal operation over the installed life of the equipment, and the radiation environment associated with the most severe design basis accident during or following which the equipment is required to remain functional, including the radiation resulting from recirculating fluids for equipment located near the recirculating lines and including dose-rate effects. - (5) Aging. Equipment qualified by test must be preconditioned by natural or artificial (accelerated) aging to its endof-installed life condition. Consideration must be given to all significant types of degradation which can have an effect on the functional capability of the equipment. If preconditioning to an end-of-installed life condition is not practicable, the equipment may be preconditioned to a shorter designated life. The equipment must be replaced or refurbished at the end of this designated life unless ongoing qualification demonstrates that the item has additional life. - (6) Submergence (if subject to being submerged). - (7) Synergistic effects. Synergistic effects must be considered when these effects are believed to have a significant effect on equipment performance. - (8) Margins. Margins must be applied to account for unquantified uncer- - tainty, such as the effects of production variations and inaccuracies in test instruments. These margins are in addition to any conservatisms applied during the derivation of local environmental conditions of the equipment unless these conservatisms can be quantified and shown to contain appropriate margins. - (f) Each item of electric equipment important to safety must be qualified by one of the following methods: - (1) Testing an identical item of equipment under identical conditions or under similar conditions with a supporting analysis to show that the equipment to be qualified is acceptable. - (2) Testing a similar item of equipment with a supporting analysis to show that the equipment to be qualified is acceptable. - (3) Experience with identical or similar equipment under similar conditions with a supporting analysis to show that the equipment to be qualified is acceptable. - (4) Analysis in combination with partial type test data that supports the analytical assumptions and conclusions - (g) Each holder of an operating license issued prior to February 22, 1983, shall, by May 20, 1983, identify the electric equipment important to safety within the scope of this section already qualified and submit a schedule for either the qualification to the provisions of this section or for the replacement of the remaining electric equipment important to safety within the scope of this section. This schedule must establish a goal of final environmental qualification of the electric equipment within the scope of this section by the end of the second refueling outage after March 31, 1982 or by March 31, 1985, whichever is earlier. The Director of the Office of Nuclear Reactor Regulation may grant requests for extensions of this deadline to a date no later than November 30, 1985, for specific pieces of equipment if these requests are filed on a timely basis and demonstrate good cause for the extension, such as procurement lead time, test complications, and installation problems. In exceptional cases, the Commission itself may consider and grant extensions beyond November 30, 1985, for completion of environmental qualification. The schedule in this paragraph supersedes the June 30, 1982, deadline, or any other previously imposed date, for environmental qualification of electric equipment contained in certain nuclear power operating licenses. - (h) Each license shall notify the Commission as specified in §50.4 of any significant equipment qualification problem that may require extension of the completion date provided in accordance with paragraph (g) of this section within 60 days of its discovery. - (i) Applicants for operating licenses granted after February 22, 1983, but prior to November 30, 1985, shall perform an analysis to ensure that the plant can be safely operated pending completion of equipment qualification required by this section. This analysis must be submitted, as specified in \$50.4, for consideration prior to the granting of an operating license and must include, where appropriate, consideration of: - (1) Accomplishing the safety function by some designated alternative equipment if the principal equipment has not been demonstrated to be fully qualified. - (2) The validity of partial test data in support of the original qualification. - (3) Limited use of administrative controls over equipment that has not been demonstrated to be fully qualified. - (4) Completion of the safety function prior to exposure to the accident environment resulting from a design basis event and ensuring that the subsequent failure of the equipment does not degrade any safety function or mislead the operator. - (5) No significant degradation of any safety function or misleading information to the operator as a result of failure of equipment under the accident environment resulting from a design basis event. - (j) A record of the qualification, including documentation in paragraph (d) of this section, must be maintained in an auditable form for the entire period during which the covered item is installed in the nuclear power plant or is stored for future use to permit verification that each item of electric equipment important to safety covered by this section: - (1) Is qualified for its application; and (2) Meets its specified performance requirements when it is subjected to the conditions predicted to be present when it must perform its safety function up to the end of its qualified life. - (k) Applicants for and holders of operating licenses are not required to requalify electric equipment important to safety in accordance with the provisions of this section if the Commission has previously required qualification of that equipment in accordance with "Guidelines for Evaluating Environmental Qualification of Class 1E Electrical Equipment in Operating Reactors," November 1979 (DOR Guidelines), NUREG-0588 (For Comment version). "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment. - (1) Replacement equipment must be qualified in accordance with the provisions of this section unless there are sound reasons to the contrary. [48 FR 2733, Jan. 21, 1983, as amended at 49 FR 45576, Nov. 19, 1984; 51 FR 40308, Nov. 6, 1986; 51 FR 43709, Dec. 3, 1986; 52 FR 31611, Aug. 21, 1987; 53 FR 19250, May 27, 1988; 61 FR 39300, July 29, 1996; 61 FR 65173, Dec. 11, 1996; 62 FR 47271, Sept. 8, 1997; 64 FR 72001, Dec. 23, 1999; 66 FR 64738, Dec. 14, 2001; 72 FR 49495, Aug. 28, 20071 ISSUANCE, LIMITATIONS, AND CONDITIONS OF LICENSES AND CONSTRUCTION PER-MITS ## § 50.50 Issuance of licenses and construction permits. Upon determination that an application for a license meets the standards and requirements of the act and regulations, and that notifications, if any, to other agencies or bodies have been duly made, the Commission will issue a license, or if appropriate a construction permit, in such form and containing such conditions and limitations including technical specifications, as it deems appropriate and necessary. ### § 50.51 Continuation of license. (a) Each license will be issued for a fixed period of time to be specified in the license but in no case to exceed 40 years from date of issuance. Where the